117 research outputs found

    Blinded by Simplicity: Locating the Social Dimension in Software Development Process Literature

    Get PDF
    The software development process is a complex human, intellectual and labor-intensive activity and human related factors have shown to be the most significant contributors to software system failures. Lacking the ability to identify or quantify these factors, software practitioners will not learn from the failures caused by them. Although, social factors give rise to high failure rates in software development projects they tend to be ignored. Business continues as usual. The inability for software engineers to attain a holistic and inclusive approach will leave the social dimension out and undermine the realization of a fully sustainable software development process.This paper builds on the master’s thesis with the same title completed in December 2019 at Stockholm University. The thesis demonstrates how research literature on software development processes addresses (or not) the social dimension of sustainability from a holistic point of view. The results indicate that the practice of dealing holistically with complexity including the social dimension is still underdeveloped. Further research is suggested regarding the development of adequate supporting tools, social skills, and managerial attitudes and behaviors

    Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research

    Get PDF
    SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causesthe infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformaticstools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection,understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to getinsight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for theroutine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemicand evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets anddevelopment of therapeutic strategies. For each tool, we briefly describe its use case and how it advances researchspecifically for SARS-CoV-2.Fil: Hufsky, Franziska. Friedrich Schiller University Jena; AlemaniaFil: Lamkiewicz, Kevin. Friedrich Schiller University Jena; AlemaniaFil: Almeida, Alexandre. the Wellcome Sanger Institute; Reino UnidoFil: Aouacheria, Abdel. Centre National de la Recherche Scientifique; FranciaFil: Arighi, Cecilia. Biocuration and Literature Access at PIR; Estados UnidosFil: Bateman, Alex. European Bioinformatics Institute. Head of Protein Sequence Resources; Reino UnidoFil: Baumbach, Jan. Universitat Technical Zu Munich; AlemaniaFil: Beerenwinkel, Niko. Universitat Technical Zu Munich; AlemaniaFil: Brandt, Christian. Jena University Hospital; AlemaniaFil: Cacciabue, Marco Polo Domingo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chuguransky, Sara Rocío. European Bioinformatics Institute; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Drechsel, Oliver. Robert Koch-Institute; AlemaniaFil: Finn, Robert D.. Biocurator for Pfam and InterPro databases; Reino UnidoFil: Fritz, Adrian. Helmholtz Centre for Infection Research; AlemaniaFil: Fuchs, Stephan. Robert Koch-Institute; AlemaniaFil: Hattab, Georges. University Marburg; AlemaniaFil: Hauschild, Anne Christin. University Marburg; AlemaniaFil: Heider, Dominik. University Marburg; AlemaniaFil: Hoffmann, Marie. Freie Universität Berlin; AlemaniaFil: Hölzer, Martin. Friedrich Schiller University Jena; AlemaniaFil: Hoops, Stefan. University of Virginia; Estados UnidosFil: Kaderali, Lars. University Medicine Greifswald; AlemaniaFil: Kalvari, Ioanna. European Bioinformatics Institute; Reino UnidoFil: von Kleist, Max. Robert Koch-Institute; AlemaniaFil: Kmiecinski, Renó. Robert Koch-Institute; AlemaniaFil: Kühnert, Denise. Max Planck Institute for the Science of Human History; AlemaniaFil: Lasso, Gorka. Albert Einstein College of Medicine; Estados UnidosFil: Libin, Pieter. Hasselt University; BélgicaFil: List, Markus. Universitat Technical Zu Munich; AlemaniaFil: Löchel, Hannah F.. University Marburg; Alemani

    Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research

    Get PDF
    SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories.Peer Reviewe

    Suspicious binds: Conspiracy thinking and tenuous perceptions of causal connections between co?occurring and spuriously correlated events

    Get PDF
    Previous research indicates that conspiracy thinking is informed by the psychological imposition of order and meaning on the environment, including the perception of causal relations between random events. Four studies indicate that conspiracy belief is driven by readiness to draw implausible causal connections even when events are not random, but instead conform to an objective pattern. Study 1 (N = 195) showed that conspiracy belief was related to the causal interpretation of real?life, spurious correlations (e.g., between chocolate consumption and Nobel prizes). In Study 2 (N = 216), this effect held adjusting for correlates including magical and non?analytical thinking. Study 3 (N = 214) showed that preference for conspiracy explanations was associated with the perception that a focal event (e.g., the death of a journalist) was causally connected to similar, recent events. Study 4 (N = 211) showed that conspiracy explanations for human tragedies were favoured when they comprised part of a cluster of similar events (vs. occurring in isolation); crucially, they were independently increased by a manipulation of causal perception. We discuss the implications of these findings for previous, mixed findings in the literature and for the relation between conspiracy thinking and other cognitive processes

    Cutaneous T‐cell lymphoma: 2017 update on diagnosis, risk‐stratification, and management

    Full text link
    Disease overviewCutaneous T‐cell lymphomas are a heterogenous group of T‐cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS).DiagnosisThe diagnosis of MF or SS requires the integration of clinical and histopathologic data.Risk‐adapted therapyTNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a “risk‐adapted,” multi‐disciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin‐directed therapies is preferred, as both disease‐specific and overall survival for these patients is favorable. In contrast, patients with advanced‐stage disease with significant nodal, visceral or blood involvement are generally approached with biologic‐response modifiers or histone deacetylase inhibitors prior to escalating therapy to include systemic, single‐agent chemotherapy. In highly‐selected patients, allogeneic stem‐cell transplantation may be considered, as this may be curative in some patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141823/1/ajh24876.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141823/2/ajh24876_am.pd

    Cutaneous T‐cell lymphoma: 2014 Update on diagnosis, risk‐stratification, and management

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108042/1/ajh23756.pd

    Remarks on the brightness paradox described by Metzger

    No full text

    Lip Reading—A Continuing Necessity

    No full text
    corecore